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A generalized modulation scheme, which includes minimum shift keying (MSK) and
staggered quadriphase shift keying (SQPSK) as special cases, is analyzed. The general
modulator can be realized as a one-input, two-output sequence transducer whose outputs
select the carrier signal for each baud. This form of the modulator has the practical
advantage of not requiving any RF filtering since there is no actual mixing of the carriers

with the modulating signals.

It is shown that the optimum demodulator (whether hard-decision or soft-decision)
always can make its decisions from the received waveform over two bauds when the
interference is additive white Gaussian noise, thus generalizing a well-known result for
hard-decision demodulation of MSK and SQPSK signals. The power spectra of MSK and
SQOPSK  signals are derived to isolate the role played by coherency between the

modulating signals and the carriers.

I. Introduction

In this report, we study a generalized modulation scheme
that includes minimum shift keying (MSK) and staggered
quadriphase shift keying (SQPSK) modulation as special cases.
The generalized modulator, whose form has certain practically
advantageous features, is introduced in Section II as a specific
one-input, two-output sequence transducer whose outputs
select the carrier signal for each baud. The resulting modulated
signal is described by means of a waveform “trellis” associated
with the “trellis” of the sequence transducer. The particular
choice of carrier signals to obtain SQPSK and MSK modula-
tion are specified.
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In Section III, we use the waveform trellis of the modulator
in a “magic genie” argument to prove that the optimum
demodulator, whether hard-decision or soft-decision, can
restrict its observations to two consecutive bauds when the
interference is additive white Gaussian noise. This generalizes a
well-known fact about MSK and QPSK modulation.

In Section IV, we derive the power spectra for both MSK
and SQPSK signals, paying special attention to the required
relationships between the carriers and the modulating signals.
Finally, in Section V, we make some concluding remarks and
give some suggestions for future research.



il. The Modulator

A. Sequence Transducer and Trellis

Letd=---d_,,dy d,, d,, - be the data sequence that
constitutes the modulator input, where each d; has value +1
(corresponding to a binary 0) or -1 (corresponding to a binary
1). The heart of our modulator structure will be the sequence
transducer, shown in Fig. 1, whose output sequences x and y
are given by

X, =2, +d, ) (1a)

and

<
H

Sa,,-d, ) (1b)

for —eo <j <+ oo, where a is the alternating sequence defined
by

a, = (-1)"! (2)

From Egs. (1) and (2), we see that the components of the
output sequences x and y take values in the set {~1, 0, + 1},
i.e., these sequences are ternary-valued. Moreover, for each i,
either x; =0 (corresponding to d;# d,_,) or ;=0 (corre-
sponding to d; = d,_,), but not both. Thus x; and y, can (and
soon will) be used to amplitude-moderate the “quadrature
components” of a carrier in such a way that one and only one
component will be present for each /.

A convenient way to display the input/output relationship
of the sequence transducer of Fig. | is by means of the trellis
shown in Fig. 2. The nodes of this trellis at depth i correspond
to the possible states of the sequence transducer at time
instant i. From Eq. (1), we see that this szate can be chosen as
the value of d;_,: the nodes in Fig. 2 have been labeled with
this choice of state. The branches leaving each state at depth §
correspond to the possible state transitions, the upper branch
being the transition when the input d; equals -1 and the lower
branch being the transition when the input d;, equals +1; the
branches are labeled with the value of (x,, y;) corresponding to
the output pair for that transition. We see, for instance, that if
the transducer is in state +1 at time instant O, then the input
dy = -1 will cause a transition to state -1 at time instant 1 and
the accompanying outputs will be (x,, y4) = (0, +1); similarly,
the input d, = -1 will also cause a transition from state +1 at
time 1 to state -1 at time 2, but the accompanying outputs
will be (x;, ¥,)= (0, ~1). Thus, each path through the entire
trellis corresponds to a particular input sequence d, and the

labels on this path specify the resulting output sequences x
and y.

The trellis of Fig. 1 is, of course, closely akin to the
“trellis” introduced by Forney to represent convolutional
codes (Ref.1). The only essential difference is that the
“sections” between the nodes at each depth are identical in
convolutional code trellises because the encoder is a time-
invariant transducer. The sequence transducer of Fig. 1,
however, is time-varying because of the effect of the alternat-
ing sequence a, which has period 2. In fact, the trellis of Fig. 2
is periodic with period 2 in the sense that the section
beginning at time instant ¢ is the same as that beginning at time
instant i + 2 for all i.

We remark that the sequence transducer shown in Fig. 3 is
equivalent to that in Fig. 1, as is easily seen from the facts that
d;=ad, and thatd;_; =a,_,d, , = -ad,_,.since a; = “a;_,.
Note that if d is a random data sequence, i.e., if the random
variables d; are statistically independent and identically dis-
tributed (i.i.d.) with P(d,= +1)=P(d;=-1)=1/2, then d' is
also a random data sequence. From Fig. 3, we can see that the
sequences X and y will have identical statistics in this case.

B. Modulator and Trellis

We are now ready to introduce our proposed modulator,
whose structure is shown in Fig. 4. Here, ¢, (¢) and cy(t) are
carrier waveforms that will be specified later for specific
modulation schemes. The baud length will be denoted as T.
The function of the “RF selector switch” in Fig. 4 is to select
one of the carrier inputs for transmission in each baud
according to the following rule:

(+cx(t), if x; = +1)

)—cx(t), if x, = -1 ‘
s(t) = JT<t<IT+T (3)

tc (1), if y, = +1
%, |

K—cy(t), if y, = —l)

We emphasize that no addition of RF signals and no RF
filtering is required in the modulator, since there is no actual
mixing of the carriers with modulating signals.

Because of Eq. (3), we see that the trellis of Fig. 2 can be
modified, as shown in Fig. 5, to show the input/output
structure of the modulator of Fig. 4. The trellis in Fig. 5
differs from that in Fig. 4 only in that the node depth is
labeled by the time i7T instead of by the time instant i, and
that the transitions are now labeled with the value of s(¢) in
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the baud /T < ¢ <(i + 1)T rather than with (x, y,). Thus, each
path through the entire trellis of Fig. 5 still corresponds to a
particular input data sequence d, but the labels on the path
now specify the resulting modulated signal s(t) from the
modulator of Fig. 4.

C. MSK Operation

We show now that the modulator of Fig. 4 realizes binary
minimum shift keying (MSK) modulation (Ref. 2) when the
carriers are selected in the manner

c () = Asin |:(w + AT) t+ 0] (4a)
e, (6) = Asin {( 0" AT“))He] (4b)

where 4 and 6 are an arbitrary amplitude and arbitrary phase,
respectively, where w, is the carrier center frequency, and
where

and

(Aw)T =7 ()

Since, in each baud, the modulated signal s(¢) will be one of
tc (2), -, (1), +c ,(t) and -¢ (t) it suffices to show that the
phdse of s(t) is contmuous at the transitions between bauds
(i.e., at times = iT for all i and for all choices of the data
sequence d).

From the trellis of Fig. 5, we see that the phase of s(¢) is
certainly continuous at r = {T if s(¢) does not switch between
the two carriers at time {7, since then s(¢) will be the same one
of +c (1), ~c,.(2), e, (t), or ~¢,(¢) in the two bauds adjacent
at time 7. It remains to show that the phase is continuous
when s(¢) switches from either +c,(r) or ~¢,(¢) to either +¢ 4 (2)
or =¢,(¢), or from either +c (t) or ~¢ (Z) to either +¢ (t) or
-c (t) at t=iT.

Suppose first that i is even. We see then from Fig. S that the
only such carrier-switching transitions possible at ¢ = iT for s(r)
are:

() from-c (1) to -c (1),
(ii) from tc (1) to *e, 1y,
(iii) from —cy(z) to  -c (¢), or
(iv) from +cy(t) to +e (1).
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But we see from Egs. (4) and (5) that the phase difference at
time ¢ =iT between c,(¢) and ¢, (1) is (Aw)iT = im, which is a
multiple of 27 when 7 is even; thus the phase of s(f) is
continuous for all four of the above transitions.

Suppose on the other hand that i is odd. We see now from
Fig. 5 that the only carrier-switching transitions that are
possible at ¢ =T for s(¢) are:

() from -c (&) to +c (1),
(ii) from te (#)  to —cy(t),
(iii) from —cy(t) to  +ex(), or
(iv) from +cy(t) to ¢ (1),

But, from Egs. (4) and (5), we see that the phase difference at
time £ =T between ¢, (¢) and -¢ L(B) s (Aw)iT+ m= (@ + D)n,
which is a multiple of 27 when i is odd thus again the phase of
s(¢) is continuous for all four possible transitions. This
completes the demonstration that the modulation is indeed
binary MSK.

More precisely, the above argument shows that the modu-
lated signal s(¢) is the same as for MSK modulation. However,
in what is commonly considered to be MSK modulation, the
data sequence controls the modulated waveform in the manner
that when the i*" data digit is +1 or -1, then the modulated
signal in the /" baud is *4 sin [(wo + Aw/2)t + 6] or 4 sin
[(wq = Aw/2)t + 0], respectively, when the appropriate sign is
chosen to maintain phase continuity. In other words, the data
digit directly controls the baud frequency. We see from
Eq. (1a), however, that x; (which controls the sinusoid of
frequency wy + Aw/2) is nonzero if and only ifd;=d,_,;and
that y; (which controls the sinusoid of frequency wo ~ Aw/2)
is nonzero if and only if d; # d,_,. But the ™™ bit in the first
difference of the binary data stream is 0 (corresponding to +1)
when d; = d;_, and is 1 (corresponding to - 1) when d,#d,_
Thus, the modulator of Fig. 4 actually realizes dszerentzal
MSK since the differences in the data sequence form the
sequence that actually controls the baud frequency. However,
we shall continue to say simply “MSK modulation,” rather
than the more precise “differential MSK modulation,” to
describe the modulation performed by the modulator of Fig. 4
when the carriers are specified as in Eq. (6).

D. SQPSK Operation

We show now that the modulator of Fig. 4 realizes
staggered-quadriphase  shift-keying (SOPSK) modulation
(Ref. 3), also called offset-keyed quadriphase shift-keying
(OKQPSK), when the carriers are selected in the manner



c (t) = Acos(wytt+8) (6a)

and

tl

cy(t) Asin (wt +0) (6b)

where again A and 6 are an arbitrary amplitude and arbitrary
phase, respectively.

By definition, SQPSK is four-phase modulation in which
the phase can change by either 0 or *7/2 between bauds, but
never by *m. (This is usually accomplished by modifying an
ordinary QPSK modulator for a baud of length 27 in which
two independent data sequences binary-antipodally modulate
the quadrature carrier components so that one data sequence
makes its transitions mid-way between the other’s transi-
tions — the advantage over ordinary QPSK is a reduction of
cochannel interference due to nonideal effects in demodula-
tion.) But this restricted phase-changing is obviously achieved
by the modulator of Fig. 4 since, as we see from Fig. 5, s(¢)
can never make a transition between +c (¢) and -c,(f) or
between +cy(t) and —cy(t), which are the only transitions
according to Eq. (6) for which the phase of s(z) would change
by 7.

Again, we remark that we have really shown here only that
the modulated signal s(¢) is the same as for SQPSK modula-
tion. Just as was the case for MSK modulation, however, when
the correspondence between the data sequence and the
modulated signal is considered, one finds that the modulator
of Fig. 4 actually realizes differential SQPSK.

lll. The Demodulator

We now consider demodulation for the modulator of Fig. 4
when the received signal is

r(r) = s(t) + n(?) (7

where n(¢) is additive white Gaussian noise (AWGN). We will
show the rather remarkable fact that the hard-decision
demodulator shown in Fig. 6 is optimum (in the sense of
minimizing the probability of error in the decision d for d,,
for all i) regardless of the choice of ¢ (¢) and cy(t) (ie., these
two carriers need have no special orthogonality properties in
each baud) provided only that, for every i, ¢, (¢) and cy(t) have
the same energy in the baud iT <t <iT + T (but the energy
could depend on {) and that d is a random data sequence.
Henceforth, we assume that this energy condition and data
condition are satisfied.

To demonstrate the optimality of the hard-decision demod-
ulator of Fig. 6, we exploit the “magic genie” approach of
Wozencraft and Jacobs (Ref. 4, p. 419). Suppose we wish to
estimate d; where 7 is even. Suppose further that the genie is
kind enough to tell us both the state, o;, of the modulator at
time instant i and also the state, O;,,> at time instant 7 + 2. If
the genie says o; = +1 and g¢;, , = +1, for instance, we see from
the trellis of Fig. 5 that d; = +1, would imply s(¢) = +c(#) for
iIT<r<iT+2T, whereas d; = -1 would imply s(¢) = +cy(t) for
iT< t<iT + 2T. Moreover, any permissible choice of s(¢), for
t<iT and for ¢t 2 iT + 2T, when d; = +1 is also permissible
when d; = -1, since the only requirement is that the state be
+1 at time instant / and again +1 at time instant i + 2. Thus,
the decision problem for d; (with genie’s help) reduces to
deciding only whether ¢, () or ¢, (¢) was transmitted in the
interval iT<t< iT+ 27T. But this is the classical problem of
deciding between two equally-likely equal-energy signals in the
presence of AWGN, and the well-known (Ref. 4, pp. 238-239)
optimum decision rule is: Choose c?: =+1 if and only if

iT+2T iT+2T
J r(t)e () dt = I r ([)cy(t) dt (8)

T iT

Defining
iT+T
X, = J r(t)c (¢)dr (9a)
iT
and
iT+T
Y, = I r(t)cy(t) dt (9b)
iT
we see that Eq. (8) can be written as
Xt X 2Vt Y (10)

But now suppose instead that the genie had told us that
0;= -1 and g;,, = +1. Recalling that i is even, we see from the
trellis of Fig. 5 that d; = +1 corresponds to s(¢) = —cy(t) foriT
<t <iT+T and s(t)= c,(¢) for iT+T <t <iT+2T
Similarly, d;= -1 corresponds to s(¢)= —c,(¢) for iT<t<
iT+ T and s(z‘)— c (@) for iT +T <t <iT+ 2T. Thus, the
optimum (genie- alded) decision rule is: Choose d =+]1 if and
only if

iT+T iT+2T
- J‘ r(t)cy(z‘) dt +I r(t)e (2)

iT iT+T

29



iT+T iT+2T
=~ j rt)e (¢)de + J- r(t)cy(t) dr (11)

T iT+T
Using Eq. (9), we can write Eq. (11) as
Y X, XY (12)
which we see is precisely the same condition as Eq. (10)!

Similar analyses for the case o; = +1 and 0,,, = -1 and for
the case 0; = -1, 0;,, = -1 show that the optimum genie-aided
decision rules are again: Choose 3\, =+1 if and only if Eq. (10)
is satisfied. But the four cases considered exhaust the possible
values for o; and o, ,. We conclude that we can exorcise the
genie; we have no use for his information since the optimum
decision rule for d;, when i is even, is independent of his
information and is just: Choose c?l = +] if and only if Eq. (10)
is satisfied. Note that this is precisely the rule for the
demodulator in Fig, 6 since, for i even, -a; = +1 so that 4, = X
+X;,and B;=Y;+Y,,,, where A, and B, are defined as

A

X.+X

i i i+1

(13a)

il

B.

o= ma (Y +Y (13b)

1)

Next, suppose i is odd and the genie tells us that ¢; = +1
and 0,,, = +1. From Fig. 5, we see that d; = +1 corresponds to
s(1) = ¢ (r) for iT <t <iT+ 2T, whereas d; = -1 corresponds
to s(¢)= —cy(t) for iT<<t<iT+2T. The same argument as
before now shows the optimum genie-aided decision rule to
be: Chose c?: =+1 if and only if

X +X, >-Y,-Y

i+1

Analysis of the three remaining choices of o; and o;, , shows
that this same decision rule is also optimum. Thus, the genie
can again be exorcised. We note further that this optimum
decision rule is the rule for the demodulator in Fig. 6 since, for
iodd,-g;=-1sothat4,= X;+ X, ,and B;=-Y,- Y, ,.

This completes our proof that the hard-decision demodu-
lator in Fig. 6 is optimum in the sense of minimizing
Pr (c?: #d;) when the noise is AWGN, when d is a random data
sequence and, when for each 7, the carriers ¢, (¢) and ¢y (t) have
the same energy in the baud i7T<<t < iT +T. Note that the
optimum decision é’: for d; depends only on r(¢) over the
two-baud interval iT<¢ < iT + 2T, this is a well-known fact
for both binary MSK and SQPSK, but we have now demon-
strated that this “two-baud optimality” is independent of
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whether ¢,(#) and ¢,(¢) are orthogonal over each baud as they
are in both MSK and SQPSK.

We have argued elsewhere (Refs. 5 and 6) that demodula-
tors should be designed to maximize the cut-off rate, R, of
the discrete channel created by the modulator, waveform
channel and demodulator, rather than to minimize bit error
probability for a hard-decision demodulator. Thus, we find it
much more satisfactory than showing that the demodulator of
Fig. 6 is the optimum hard-decision demodulator to show
that:

When A4, - B, is taken as the output, the demodulator
of Fig. 6 is optimum in the sense of maximizing the
cut-off rate, Ry, of the discrete channel between the
modulator input and demodulator output (and also in
the sense of maximizing the capacity, C, of this
channel).

To prove this claim, we must show that the demodulator with
output A, - B, preserves the likelihood ratio for the decision
on d;, since any operation on r(¢) reduces R, (and also C)
unless and only unless this likelihood ratio is preserved
(Ref. 5).

We begin by letting r, s and n be the vector representations
of r(t), s(¢) and n(z), respectively, in some appropriate
Euclidean space (“signal space’). Given that r is received and
that a magic genie informs the receiver that d; =6, for all j #1,
the likelihood ratio for the decision on d; is

phld.=+1,d.=6 forj#i)
A = i bi i
! p(rldl.=—1,dj=6iforj¢i)

(14)

where p is a conditional probability density function. Equa-
tion (14) can be rewritten as

_pels,y)

= 15
pls.) (15)

i

where s, | and s_, are the signal space representations of the
waveforms s, ,(#) and s_,(r) assumed by s(r) for the data
sequence d;= &, for j#i with d; equal to +1 and -1,
respectively. Since r= s+ n and the noise n(r) is AWGN, Eq.
(15) becomes

2
—N—Olr— S,
N (16)
J3 1 5
‘7\7*11“ S 1'
e 0



where N, is the one-sided noise power spectral density. The
assumption that, in each baud, ¢ (¢) and ¢, () have the same
energy implies that s, (¢) and s_,(z) have the same energy or,
equivalently, |s,, |2 = [s_, 2. Thus, Eq. (16) becomes

2
vl G, 78 )l
(17)

By the correspondence of “dot product™ in signal space to
correlation of waveforms,

re(s,, ~s_)= f r@) [s, () -s_ (O] dt  (18)

Because the data sequences yielding s, ,(r) and s_,(¢) differ
only in the value of d;, we see from the trellis of Fig. 5 that
41t} =s_,(0) for t <iT and 1 =T + 2T so that Eq. (18) can
be written as

iT+2T
re(s,, s )= f r() [s, (1) - s_ (D) dr (19)

i

It remains to evatuate Eq. (19). From Egs. (2) and (9) and
the trellis of Fig. 5, we find that, for all four possible values of
d;_yand d;, ,,

iT+T
J r(t) [sH(r) -s_ (O] dit= X, +aY,
iT

and

iT+2
J r@) [s, () -s_ (1) dr = X, *ta, Y.,
i

T+T

-a.Y

i+t1 i+l

This, together with Eq. (13), implies that Eq. (19) can be
written as

r-(§+]

-5 ) = A,- B, (20)

(which shows again that we can exorcise the genie, since 4;
and B; can be formed without the genie’s help.) Finally,
substitution of Eq. (20} into Eq. (17) gives

2
N A7 B)
A=e® @n

which shows that the output 4; - B, does indeed preserve the
value of the likelihood ratio, as was to be shown.

We note that, since the demodulator of Fig. 6 with A4;,- B,
taken as the output preserves the likelihood ratio (and hence
all the statistical information about d,), the optimum (in the
sense of maximizing R, or C) soft-decision modulator with
any specified number of demodulator output levels can be
obtained simply by appropriately quantizing the output Z; (cf.
Refs. 5 and 7 for details of this procedure).

IV. Modulation Spectra
A. General Considerations

We now examine the spectral properties of the signal
produced by the modulator of Fig. 4.

With the sequence x of Eq. (la), we associate the pulsed
waveform x(r) defined by

x(t) = x, T<t<@+1)T (19)
In the same way, we associate pulsed waveforms y(r), d(r), and
a(t) with the sequences y, d, and a, respectively. Note that a(r)

is a “square wave” of period 27.

For purposes of spectral analysis, we need now to randomize
the time origin so that all time signals under consideration
become stationary random processes. We accomplish this by
replacing all time functions [e.g., x(z) and s(¢)] with their
translations by 7, seconds [e.g., x(f + t,) and s(r + )] where
to is a random variable uniformly distributed over the interval
0 < 1, < 2T and statistically independent of the data pulse
values. We will write R_(r) and R (7), for instance, to denote
the resulting autocorrelation functions

R(r)=Ex @+t +r)x(t+ to)]

= Elx(ty +m)x(ty)]
and
R (r) = Efs(ttt,+7)s(t+1,)]

= Els(ry +1)s(t))]
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respectively. It should be noted that, since all time signals are
translated by 7, seconds, this randomization of the time origin
neither introduces nor removes any “coherence’ between the
modulating signals and the carriers.

Note that the data signal d(z + t,) is the familiar telegraph
wave (with baud length T and amplitude +1). Thus, R,(7) is
the triangular autocorrelation function shown in Fig. 7; and
the power spectral density (the Fourier transform of R 4(7)) is
the familiar

$,(f) = Tsinc? (fT) (20)
where
sinc (z) = ‘sMir;(an)
The spectrum S (f) is also shown in Fig. 7.
Recalling Egs. (1a) and (1b), we see that
x(1) = 2 [0 +d (- 7)) (210)
and
Y0 =T a0 ld@)-d@-T) ()

From Egs. (21a) and (21b), we find by a simple calculation
that

R (1) = R (1) = % R (r+17) +%Rz (T)'f'%RZ(T— 7)

a3 o

which further implies

S.(f) = S,() = S,2f) = Tsin? QfT)  (23)

These autocorrelation functions and spectra are shown in
Fig. 8. Inasmuch as x(¢) and y(¢) are ternary-valued (0, +1 or
~1), it is a bit surprising that their autocorrelation functions
are of the same form as the binary-valued (+1) data signal d(¢).
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Recall from our discussion in Section II about the
sequences X and y that, for each 7, one of x; and y; will be 0
and the other will be +1 or -1. Thus, the random processes
x(t+ ty) and y(r+ t,) are highly dependent. It is quite
surprising then to find that the random processes x(t + t,) and
¥(t +t4) are uncorrelated, i.e., that

ny(r) = Fx(t+ ot )y (z‘o +n] =0 (24)

as can be verified by a direct (but somewhat tedious)
calculation from Egs. (21a) and (21b).

We now turn to the main task at hand, finding the spectrum
of the modulated signal, i.e., of the random process s(¢ + ¢,).
From Eq. (3), we see that

s@) = x(@)c, (1) +y(@) e, (1) (25)

which is our starting point. To proceed further, we must
consider specific carrier signals. One general note of caution is
in order, however, at this point. Because of Eq. (24), it might
seem that s(¢) in Eq. (25) can be treated as the sum of two
independently modulated signals. This is not true in general,
however, because some types of coherence between ¢, (r) and
¢, () can cause x(t+ ty) ¢ (1 + t,) to be correlated with y(f +
ty) ¢, (¢t ty), even though x(z+ ;) and y(r+ £y) are
uncorrelated. We shall soon see that this type of coherence
between ¢, (¢) and ¢, (£) does not occur with SQPSK modula-
tion, but does occur with MSK modulation.

B. SQPSK Spectrum

As we saw in Subsection I1.D., the signal s(¢) is an SQPSK
modulated signal when the carriers are specified by Eqs. (6a)
and (6b). From these equations and Eq. (25), we find in this
case that

s(t+e,) = Ax(ettg)cos fw, (r+1))+0]
tAy@+t,)sin [w, (t+1,)+0] (26a)

It follows from Eq. (26a) that

i

R.S(T) E[s(z‘+t0 +1)s(t+1,)]

1
2

]

A% R (1) cos (w,7) + 17142 R (1) cos (w,7)

+A? ny(r) sin (w,7)

(27)



(Where the vanishing of the double carrier frequency terms
under expectation strictly speaking requires 7 to be an integer
multiple of the carrier period 2m/w,, but is virtually the case
whenever w, >> 1/T.) By virtue of Eq. (24), we see that the
term resulting from the cross-correlation of the two carriers
vanishes (i.e., Eq. (26) represents independent modulation of
orthogonal carriers) so that Eq. (27) becomes

RS(T) = A2 Rx(‘r) cos (wOT) (28)

where we have also made use of Eq. (22). From Egs. (28) and
(23), it follows that

S(f) =5 AXT fsine? (207~ £,) T) +sinc? [2(7+£,) T13
(29)

where f0 = w0/27r is the carrier frequency in hertz. Equation
(29) gives, of course, the well-known spectrum of SQPSK,
which coincides with that of ordinary QPSK. The purposes of
our deriving this result here are to emphasize the role played
by the vanishing of ny(r) and to point out that, because the
phase angle 6 in Eq.(26) is arbitrary, no special phase
relationship is required between the carriers and the modulat-
ing signals. The spectrum S (f) of Eq.(29) is sketched in
Fig. 9.

C. MSK Spectrum

When the carriers in Eq. (25) are specified as in Egs. (4a)
and (4b), s(z + £,) becomes the MSK signal

s(t+1,) = Ax(t+1)sin [(wo + Az—w) (r+e,)+ 6]

+Ay(t+l‘0)sin [(wo— %@) (z+zo)+6
(26b)

Applying familiar trigonometric identities, we can rewrite
Eq. (26b) as

s@H1) = Afx@+1)+y(t+1,)]
* cos [é;ﬁ (r+ to)] sin [w, (¢+1,)+0]

tAR@E ) -y@Etey]

* sin [ézg (t+ to)] cos [w, (1+12,)+0] (26¢)

We are thus led to define the signals

d (@) = x() + (1) (30a)
and

d,(8) = x(t) - y(t) (30b)

With the aid of Egs. (21a) and (21b), we see from Eqgs. (30a)
and (30b) that

d(@), IT<t<(+1)T and {odd
d, (1) =

d@-T), iT<t<(i+1)T and ieven

(30¢)
and

d(t-T), iT<t<(@G+1)T and iodd
d,(1) =

d(1), IT<t<(i+1)T and ieven

(30d)

In other words, d,(?) and d,(t) are independent amplitude
random data signals of baud length 27, staggered so that the
transitions in d (¢) occur at times i7 with i odd whereas the
transitions in d,(#) occur at times /7 with i even. The data
values (+1 or -1) in d (¢) correspond to those of d(r) in the
bauds iT< t+< (i + 1) T with { odd, while the data values in
d,(#) correspond to those of d(¢) in the bauds i7<¢<(j + 1)
T with i even. In particular, it follows that

Rdl(T) = Eld,(t+e,+7)d (t+1)]

Rd2 (T)=Rd(’r/2) 31

Substituting Eqgs. (30a) and (30b) into Eq. (26¢), we find

s(t+1,) = Ad (t+1,) cos [éz“i (r+z0)] sin [w,(t + 1,)

0] +A4d,(t+1)sin [%(*—) (t+t0):]

cos [wy(t+1,) +0] (32)

It follows from the statistical independence (and zero means)
of the amplitudes of d (+ + t,) and d,(t + t,) that the
cross-correlation between the two terms on the right in
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Eq. (32) vanishes. Moreover, each of the two terms clearly has
the same autocorrelation function so that

RS(T) Efs(t+t,+1)s(t+ t,)]

A% cos (wgm) R, (1) (33)

where R (7) is the autocorrelation function of the random
process

mr+t,) =d(t+1))cos [ézg}— (¢ + to)} (34)

We now proceed to find

R (1) = Efm(t+ty+1)m(t+1,)] (35)

H

Elm(t, +7) m(z‘o)] (36)

where we have also used the fact that (Aw)T = n. Taking
Fourier transforms (recalling that R (1) = R_(-7)) in
Eq. (38) yields

S, () =3 [Sinc (2fT —%) + sinc <2fT + %)]2

I~

2
=% sinc ‘:2( —ézz) T} + sinc [2 <f+A—f) T]
(39)
where
ar=52 - L (40)

Equation (39) is our desired expression for the spectrum of

m(t).

It is convenient to take first the conditional expectation in Eq. (36) for a fixed to,which gives

1]

E %m(to +1)ym(t,) | to%

E{dl(t0 +7)d,(2,) cos {%‘J (T, * T):I cos [éz(i to}

i

Aw : Aw
cos [~—2— (z0+7)] cos [—* to] , 0t <T-randT<t,<2T

0, T-r<r<T

2

(37

Recalling that ¢ is uniformly distributed over 0 < ¢ <2T, we find that with the aid of Eq. (37) that

27T
1
R, ()= 37 J E{m(ro +r)ym(ty) | to% dt,
0
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From Egs. (33) and (39), we have finally

5) =4 A7 T dsine [2 (f—f0 - ézf) T]

2
+ sinc ‘:2 (f—f0+—A7f) T]
+% A? T <sinc \:2 (f+ 0—%) T]

2
+ sinc \:2 (f+f0+éz£) T] (41)

which is the well-known spectrum of MSK, but in a form
perhaps more transparent than the usual one. This spectrum is
sketched in Fig. 9 for comparison with that of SQPSK.

We remark here that the phase angle 6 in Eq.(26c) is
arbitrary. Thus, the MSK spectrum of Eq.(41) does not
require any special phase relationship between the modulating
signal and the carriers cx(t) and cy(t).

The MSK spectrum does, of course, depend on the
coherency between the modulating signals, x(¢) and y(¢), and
the carriers, sin [(w, + Aw/2) 7+ 6] and sin (o~ Aw/2) £+
8], in Eq. (25). If there were no cross-correlation between the

two terms on the right in Eq. (26b), then the autocorrelation
function of s (¢ + ¢,) would be simply

I 2 Aw 14 _Aw
5A R (7)cos [(wo + 5 )TJ + 2A Ry(T) cos l:(wo 5

I B I (N2

and hence the power spectrum of S(¢ + tO) would be

i A A
A
+S, (f+f0 +-A5f) +S, (f+f0-é2[”
:%A2 T {sincz I:z (f— 0—%[) T]
+ sinc? [2 (f»f0+A—2f) T]}

2

+% A% T {smc2 [2 (f+f0 + A—zf) T:]
+ sinc? ‘:2 (f+f0 - —Aif—) Tj\ } (42)

Comparing Eqgs. (41) and (42), we see that the cross-correla-
tion between the two terms on the right in Eq. (27) has the
effect of changing the spectrum from a sum of the squares of
two sinc functions (as in Eq. (42)) to the square of the sum of
the same two sinc functions. Moreover, outside the central
lobe of S (f) (i.e., outside the range f, - 3AT<f< [y +
3/4T), one of the sinc functions in Eq. (41) is positive and the
other is negative for all £, as follows from the fact that their
arguments differ by 2(Af) T=1. Thus, one of these sinc
functions always tends to cancel the other outside the central
lobe, which is the reason that the MSK spectrum drops off
much more rapidly than that of SQPSK outside the central
lobe.

We have already mentioned that the phase angle 0 between
the carriers and the modulating signals has no effect on the
MSK spectrum. In fact, more is true. The phase angle ¢ in
Eq. (26b) can even be time-varying, i.e., a random process (¢
+ to), and the above analysis goes through unchanged provided
only that 6(¢) not change appreciably over one baud (say, by
0.1 radians or less.) This latter condition is required to insure
the vanishing of the expectation of the double carrier
frequency terms when computing R (7).

V. Concluding Remarks

It is well-known (Ref. 8) that MSK modulation can be
viewed as “offset QPSK” modulation in which the modulating
signals are sinusoidal pulses in each band rather than rectangu-
lar pulses — this follows immediately from Eq.(32) above.
Simon (Ref. 9) has offered a generalization of MSK, based on
this fact, by considering more general pulse shaping.

By expanding on the left and using the usual trigonometric
identities, one easily proves the identity

2
+
[sinc (Z—%) +sinc (Z +%):| = b I_M
2772 Z2 __1__
4
(43)
With the aid of Eq. (43), Eq. (39) can be rewritten as

_ 4T 1+ cos (4nfT)

S
) 7? (16f% T? - 1)?

(44)
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which is the usual baseband form of the spectrum of MSK and
shows that the spectrum drops off as 1/f* for large f (in
contrast to that of QPSK which drops off only as 1/f?).

Our aim in this report has been to study MSK in particular
from a new standpoint with the hope of isolating the
fundamental structure that accounts for its spectral improve-
ment over QPSK. The “sequence transducer” approach that
we have taken appears amenable to new generalizations of
MSK signalling by different choices of the sequence transducer
and carriers. This seems to us to warrant further investigation.

Finally, we remark that several recent papers, e.g., (Refs. 10
and 11), have considered a “phase trellis” approach to MSK
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and other forms of continuous phase modulation. (Our
approach is closely related to these but somewhat more
general since we can admit arbitrary “carrier signals” when
converting the trellis of the sequential transducer to a
“waveform trellis.””) Anderson and Taylor (Ref. 11) in parti-
cular show substantial power improvements (2 to 4 dB) over
QPSK together with a smaller bandwidth. However, their
modulation scheme introduces “convolutional code type”
constraints into the modulated signal so that demodulation
over a fixed number of bauds is not optimal (as it is for MSK).
At this writing, it is not clear whether these schemes actually
exploit the potential “coding gain” of simpler modulation
formats and thus cannot be further encoded efficiently, or
whether in fact they actually utilize bandwidth more effi-
ciently than simpler modulation schemes. It seems to us that
this is an important question to settle.
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Fig. 1. The sequence transducer

Fig. 2. Trellis for the sequence transducer of Fig. 1
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Fig. 5. Waveform trellis for the modulator of Fig. 4
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Fig. 6. Optimum hard-decision demodulator for the modulator of Fig. 4
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Fig. 7. The autocorrelation function Rqg (r) and the power spectral
density Sy (f) of the random data signal d (t + 1,)

f) = Tsmc (2fT)
R (T) =R (T) 1/2R (T/Z)
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Fig. 8. The autocorrelation functions and power spectra of the
outputs x (t) and y (t) of the sequence transducer of Fig. 1
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Fig. 9. Power spectra of MSK and SQPSK showing attenuation relative to spectral peak at sidelobe center frequencies



